SIZE EXCLUSION CHROMATOGRAPHY OF POLYMER MOLECULES ON MICROPARTICULATE SILICA GELS: A COMPARATIVE STUDY

OSCAR CHIANTORE* and MARINO GUAITA

Istituto di Chimica Macromolecolare dell'Università, Via G. Bidone 36, I0I25 Torino (Italy)
(Received December 17th, 1982)

Abstract

SUMMARY

Inverse size exclusion chromatographic procedures have been applied to silica gel packings with different pore size distributions and the resulting pore dimensions have been compared with those obtained by nitrogen capillary condensation. It is shown that the evaluation of pore sizes depends on the model which is assumed to describe the real pore texture. The empirical method developed by Halàsz seems to be useful in checking the adequacy of the pore model adopted. The differences in the results obtained from the chromatographic and absolute methods are discussed.

INTRODUCTION

Among the several non-conventional uses of size exclusion chromatography (SEC) is the measurement of the elution volumes of molecules having different sizes for the determination of particle porosimetry of solid packings ${ }^{1-4}$ as an alternative to classical capillary condensation and mercury porosimetry. This application, which has been called inverse SEC^{1}, has great relevance for the complete characterization of porous phases employed in liquid chromatography of polymers, and hopefully will allow a deeper insight into the pore structures involved in the chromatographic analysis. Two different approaches have been reported in the use of SEC for the evaluation of pore sizes and pore size distributions: the first one ${ }^{1,4}$ relies on the application of a theoretical relationship for the separation of solute molecules by a random-planes pore model ${ }^{5}$ to the experimental distribution coefficients of standard polymer molecules; the second approach ${ }^{2,3}$ is based on an empirical relationship between the molar masses of monodisperse polystyrene standards generally used for column calibration and the smallest pore diameters into which the sample molecules can diffuse.

In this paper the results obtained by different inverse SEC procedures on silica gels having various pore size distributions will be compared and discussed from the point of view of both the differences in the methods and the pore model adopted.
TABLE 1

The distribu reported for	tion coe each co	$\text { cients, } K_{\mathrm{St}}$ m.	c, of th	andards,	e pore vol	me fre	cies, $w(K$	c), and th	logar	of the g	metric	n of	nsecutive	d_{p} values are
Molar mass	$R_{h}(\dot{A})$	$d_{p}(\dot{A})$	SI 100			SI 500			SI 1000			SI 4000		
			$K_{\text {SEC }}$	$\begin{gathered} w\left(K_{S E C}\right) \\ \times 100 \end{gathered}$	$\log \left(d_{p}\right)_{m}$	$K_{S E C}$	$\begin{aligned} & w\left(K_{S E C}\right) \\ & \times 100 \end{aligned}$	$\log \left(d_{p}\right)_{m}$	$K_{\text {SEC }}$	$\begin{aligned} & w\left(K_{S E E}\right) \\ & \times 100 \end{aligned}$	$\log \left(d_{p}\right)_{m}$	$K_{\text {SEC }}$	$\begin{gathered} w\left(K_{S E C}\right) \\ \times 100 \end{gathered}$	$\log \left(d_{p}\right)_{m}$
Toluene		9	1	15.8	1.227	1			1			1		
800	6	32	0.912	49	1.635		9			11				1.551
2200	10.5	58	0.785	55.4	1.631	0.927	12.3	1.841	0.910	13	1.841		3.3	1.551
4000	15	83	0.700	88.	2.035	0.908	23	2.035	0.890	16.2	2.035		3.3	
10,000	24.7	142	0.494	104.2	2.224	0.854	51.4	2.224	0.852	36.1	2.224	0.960		
17,500	34	198	0.344	104.2 94.8	2.392	0.780	60	2.392	0.800	37.3	2.392			2.320
37,000	51.5	307	0.162	94.8		0.665	89	2.628	0.729	73	2.628	0.919	12.2	2.628
111,000	96	588	0			0.415	93.2	2.864	0.523	78.4	2.864	0.831	31.3	2.864
233,000	146	910				0.238	55.3	3.025	0.374	53.8	3.025	0.774	30	3.862
390,000	195	1233				0.165	43.9	3.025 3.160	0.303	74	3.025 3.160	0.653		3.025 3.160
670,000	264	1700				0.104	43.9	3.373	0.206	60.8	3.373	0.597	40.3	3.160 3.373
2,050,000	497	3280				0.024	31	3.555	0.026	60.8 33.8	3.555	0.266	116	3.355 3.555
2,770,000	590	3920				0	31		0	33.8		0.242	31.2	3.758
$1 \cdot 10^{7}$	1215	8365										0.153	27	4.045
$2.6 \cdot 10^{7}$	2083	14,700										0.048	43	

EXPERIMENTAL

SEC calibration curves were determined on four commercial microparticulate silica gels (LiChrospher; SI 100, 500, 1000, 4000; E. Merck, Darmstadt, G.F.R.) having different pore size distributions and nominal particulate dimensions of 10 $\mu \mathrm{m}$. With each gel a column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ I.D.) was prepared by dispersing the silica in methanol and packing the column by the ascending technique ${ }^{6}$ at a final pressure of about 10 MPa .

Chromatographic measurements were performed on a Siemens 100 liquid chromatograph equipped with a UV detector. For sample introduction a Rheodyne 7010 injection valve with a $10-\mu$ l loop was used; all the connections between the injector and column and between the column and detector were made of as short as possible low dead-volume capillary tubing (0.025 cm I.D.).

Purified tetrahydrofuran (THF) was used as mobile phase. Low dispersion polystyrene (PS) standards (ArRo Labs., Joliet, IL, and Polysciences, Warrington, PA, U.S.A.) were injected at a 0.1% (w / v) sample concentration (0.05% for the standards of highest molar mass) in THF. Toluene was used as a totally permeating solute.

The peak elution volumes of the injected samples were independent of the flow-rate over a wide range (from about 0.15 to $2.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$). The calibrations were performed at a low flow-rate (about $0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$) where the elution peaks were practically symmetrical, and the solute distribution could be considered as at equilibrium. All the measurements were made in triplicate and the reproducibility of the elution volumes was better than 1%.

Surface area determinations on the porous silica gels were performed by the BET method ${ }^{7}$ for nitrogen sorption.

RESLILTS

The distribution coefficients, $K_{\text {SEC }}$, of the polymer molecules in the different gels were determined from the elution volumes of the injected standards according to

$$
\begin{equation*}
K_{\mathrm{SEC}}=\left(V_{\mathrm{e}}-V_{0}\right) /\left(V_{\mathrm{t}}-V_{0}\right) \tag{1}
\end{equation*}
$$

where V_{e} is the standard elution volume, V_{0} is the interstitial volume obtained with excluded solutes and V_{t} is the elution volume of a totally permeating solute. The results obtained are in Table I.

Pore dimensions by the Halàsz method

According to the method proposed by Halàsz and co-workers ${ }^{2,3}$ for the determination of pore distributions, the following empirical relationship holds between the weight-average molar masses, M_{w}, of the permeating solutes and the smallest pore diameters, d_{p}, in which the molecules can diffuse when they are in a good solvent:

$$
\begin{equation*}
d_{\mathrm{p}}(\AA)=0.62 M_{\mathrm{w}}^{0.59} \tag{2}
\end{equation*}
$$

Fig. 1. Integral (a) and differential (b) pore size distributions of LiChrospher silicas according to the Halàsz method. Silicas: SI $100(-\cdots)$; SI $500(\cdots \cdots)$; SI $1000(-$ - \quad; SI $4000(---)$.

By means of eqn. 2 the usual SEC calibration curve of $K_{\text {SEC }} v s . \log M_{w}$ can easily be transformed into a plot of $K_{\text {SEC }}$ against $\log d_{\mathrm{p}}$. Fig. la shows such a plot for the different silica gels: the curves can be interpreted as integral pore size distributions. The differential distributions presented in Fig. Ib as plots of $W\left(K_{\text {SEC }}\right)=\Delta K_{\text {SEC }} / \Delta \log$ d_{p} were obtained by considering the differences in $K_{\text {SEC }}$ and $\log d_{\mathrm{p}}$ for two consecutive PS standards and the logarithm of the geometric mean, $\left(d_{\mathrm{p}}\right)_{\mathrm{m}}$, of the corresponding two consecutive d_{n} values. The d_{r} values for the injected standards, together with the values of $w\left(K_{\text {SEC }}\right)$ and $\log \left(d_{\mathrm{p}}\right)_{\mathrm{m}}$ obtained on the four columns are reported in Table I.

From Fig. 1b it is seen that the SI 100 and 500 gels show quite regular pore size distributions around a maximum frequency value, whereas the two silica gels with larger pore sizes, SI 1000 and 4000 , exhibit distributions with two separate maxima. In order to check whether such an effect could have arisen through improper column packing, several columns were prepared with the SI 4000 silica from the same batch, and in all cases the same distribution pattern was obtained.

An estimate of the chromatographic mean pore diameters, \vec{a}_{p}, for the investigated silica gels was obtained from the integral distribution curves of Fig. 1a by taking the values of d_{p} at $K_{\mathrm{SEC}}=0.5^{3}$; the results are reported in Table III.

Pore dimensions according to Giddings treatment (the Freeman method)
According to the Giddings treatment ${ }^{5}$ of the separation of spherical solutes by a random-planes pore structure, the dependence of the distribution cocfficients of standard molecules on the solute dimensions in the solution can be expressed through the following relationship

$$
\begin{equation*}
-\ln K_{\mathrm{SEC}}=A R_{\mathrm{h}} \tag{3}
\end{equation*}
$$

Fig. 2. Values of $-\ln K_{\text {SEC }}$ plotted against the hydrodynamic radii, R_{h}, of the PS standards, for the LiChrospher silicas.
where A is the surface area per unit pore volume and R_{h} is the hydrodynamic radius of the polymer molecules. By plotting $-\ln K_{\text {SEC }} v s . R_{\mathrm{h}}$, for a given column system, a value of A is obtained from which a mean pore dimension can be calculated, depending on the model assumed for the pore geometry.

The values of the hydrodynamic radii of the injected PS standards, obtained from the equation ${ }^{8}$

$$
\begin{equation*}
R_{\mathrm{h}}(\AA)=1.37 \cdot 10^{-1} M_{\mathrm{w}}^{0.564} \tag{4}
\end{equation*}
$$

are reported in Table I, and are in good agreement with those calculated from the equivalent hard-sphere model ${ }^{9}$.

In Fig. 2 the experimental $K_{\text {SEC }}$ values obtained for the four different silica gel columns are plotted against R_{h}, according to eqn. 3. The curves show two interesting characteristics: (i) deviation from linearity at the highest values of R_{h}; (ii) the intercepts of the linear portions of the curves are not equal to zero (particularly for SI 100 , and for SI 500 in the enlarged section of the initial part of the plot). The deviation

TABLE II
VALUES OF SURFACE AREAS, A AND S, OBTAINED BY THE FREEMAN METHOD AND FROM BET MEASUREMENTS ON THE LICHROSPHER SAMPLES

Silica	$A\left(\dot{A}^{2} \mathrm{~cm}^{-3}\right)$ eqn. 3	$S\left(m^{2} g^{-1}\right)$ eqn. 5	$S_{\text {BET }}\left(m^{2} g^{-1}\right)$
SI 100	0.0348	360	358
SI 500	0.0091	112	65
SI 1000	0.0061	60	46
SI 4000	0.0021	20	14

from linearity derives from the inadequacy of the random-planes model when the molecule dimensions are so large that the curvature of the pore walls becomes important, and the pore walls themselves can no longer be regarded as planes. On the other hand, the non-zero of R_{h} at $\log K_{\mathrm{SEC}}=0$ arises from the fact that $K_{\mathrm{SEC}}=1$ for small molecules which have finite dimensions; therefore, in the real exclusion behaviour, the limit $K_{\text {SEC }}=1$ for $R_{\mathrm{h}}=0$ predicted by eqn. 3 does not hold: the values of R_{h} obtained from Fig. 2, at $K_{\mathrm{sEC}}=1$, range from 3 to $8 \AA$ for the different packings.

The values of the surface areas per unit pore volume, A, have been evaluated from linear regression on the linear part of the curves of Fig. 2. The A values were then transformed into the surface areas per mass unit of the stationary phase, $S\left(\mathrm{~m}^{2}\right.$ g^{-1}), by means of the equation

$$
\begin{equation*}
S=\frac{A V_{\mathrm{P}}}{\rho V_{\mathrm{s}}} \cdot 10^{4} \tag{5}
\end{equation*}
$$

where $V_{\mathrm{p}}=V_{\mathrm{t}}-V_{0}, V_{\mathrm{s}}=V_{\mathrm{col}}-V_{\mathrm{t}}$ is the volume of the solid gel in the total column volume, $V_{\text {col }}$, and ρ is the skeleton density of the gel. Values of ρ for the investigated LiChrospher have previously been reported ${ }^{10}$. In Table II are collected the values of A and S obtained from the data of Fig. 2, together with the experimental surface areas measured by the BET method on the same silica samples.

The mean pore dimensions of LiChrospher silicas have been calculated from the surface areas by the relationship

$$
\begin{equation*}
\vec{a}_{\mathrm{p}}=4 V_{\mathrm{sp}} / S \tag{6}
\end{equation*}
$$

by assuming uniform cylindrical non-intersecting pores ${ }^{7}$, where $V_{\text {sp }}$ is the specific pore volume. The $V_{\text {sp }}$ values of the silicas were obtained from the ratio between V_{p} and the weight of gel in each column ${ }^{10}$.

The mean pore dimensions obtained from eqn. 6 both by using the S values from the inverse SEC and the BET results are reported in Table III.

Pore dimensions according to Doi's treatment

Another theoretical expression for the partition of macromolecules between random porous networks and bulk liquid was proposed by Doi ${ }^{11}$. He considered the pore structure generated by solid phase elements of different types (spheres, rods or

TABLE III
VALUES OF d_{p} FROM BET AND FROM THE DIFFERENT INVERSE SEC METHODS FOR THE LICHROSPHER SAMPLES

Silica	Pore size (\AA)				
	Nominal	BET	Halàsz method	Eqn.3	Eqn. 7
SI 100	100	116	135	116	167
SI 500	500	760	480	440	400
SI 1000	1000	860	650	660	900
SI 4000	4000	2900	2090	2000	2200

flexible chains) randomly embedded in space. The voids between the solid elements constitute the pores of the material. For flexible chain macromolecules the following approximate relation is obtained
$-\ln K_{\mathrm{SEC}}=\frac{2 A}{\sqrt{\pi}} \cdot R+A^{2} R_{\mathrm{h}}^{2} \alpha$
where α is a constant depending on the pore geometry. Eqn. 7, taking into account the curvature of the pore wall and involving the parameter α which characterizes the pore shape, can be looked upon as a generalization of the Giddings approach.

The A values were evaluated from eqn. 7 by polynomial regression on the $K_{\text {SEC }}$ and R_{h} values corresponding to the four gels investigated; the corresponding \bar{d}_{p} values obtained from eqns. 5 and 6 are reported in Table III.

DISCUSSION

The results in Table III show a rather wide scatter of the pore dimensions, as obtained from the different experimental approaches, around the nominal values. In particular, it appears that the SI 4000 sample has a decidedly smaller effective mean pore size than the nominal one, and that gels SI 500 and 1000 seem to have more similar porosities than expected: this last result is in agreement with the closeness of the corresponding calibration curves in Fig. la. The values calculated according to the Halàsz method are in satisfactory agreement with those calculated according to Freeman, and both these values are lower than the BET values for the SI 500,1000 and 4000 samples. In the case of SI 100 silica, the BET, Halàsz, Freeman and nominal values are in reasonable agreement. The trend of the \vec{a}_{p} values calculated according to Doi seems less regular: the Doi value is close to the BET one (as well as to the nominal one) in the case of SI 1000, whereas in the case of the other gels the Doi values are in fair agreement with the Halàsz ones. Such agreement, however, is poorer than that between the Halàsz and the Freeman values.

It must be kept in mind that both eqns. 3 and 7 strictly apply only to the ideal models for which they have been derived. If the real pore structures are not ad-

Fig. 3. Differential pore size distributions according to the Halàsz method for Porasil C ($)$ and D (O). The $K_{\text {sec }}$ data are taken from ref. 12.
equately represented by the random models on which these equations are based, unrealistic values of the surface areas and, consequently, of the pore sizes will result. On the other hand, the Halàsz method does not involve any assumption on pore shape. Then, if one can place any confidence in this method, its empirical origin notwithstanding, an indication might be obtained of the real pore shape when the \vec{a}_{p} values from this method agree with the \vec{d}_{p} values calculated from relationships based on specific pore models. In other words, the better agreement found in the present case between the Halàsz and the Freeman values than between the Halàsz and the Doi values might be taken as an indication that, for the four silica gels, the pore geometry is fairly well described by the random-planes model.

Support to such a view can be obtained by considering the two Porasil silicas (Porasil C and D) carefully investigated by Van Kreveld and Van den Hoed ${ }^{12}$, who found an excellent agreement between the mean pore sizes measured by mercury porosimetry and those obtained by assuming a random-spheres model for the gel pores. If the data of ref. 12 are treated according to the Halasz method the two well defined distributions shown in Fig. 3 are obtained. From these distributions one can calculate $\vec{a}_{\mathrm{p}}=310 \AA$ for PorasilCand $\vec{a}_{\mathrm{p}}=630 \AA$ for Porasil D, in fairly good agreement with the values of 330 and $700 \AA$, respectively, reported by Van Kreveld and Van den Hoed. On the other hand, when the same data are treated according to the random-planes pore model (Freeman method) one obtains \vec{a}_{p} values as low as 180 and $440 \AA$ for Porasil C and D respectively. This result might be taken as evidence that these Porasil silicas are better described by the random-spheres than the randomplanes pore model.

Finally, it is worth pointing out that, by assuming a random-spheres pore model for the four LiChrospher samples, one obtains \vec{a}_{p} values (75, 450, 540 and $1800 \AA$ for SI $100,500,1000$ and 4000 respectively) which are less consistent with the values from the Halàsz method (Table III) than those based on eqn. 3; of course, this might be looked upon as a failure of the random-spheres model in describing the geometry of the pores of these LiChrospher samples.

The difference obtained in the mean pore size evaluation between the inverse SEC methods and the BET method requires some comment, as there are few data in the literature for a comparison of results from inverse SEC and absolute pore size measurements ${ }^{1,2}$, and mainly limited to stationary phases with pore diameters up to about $400 \AA$. Assuming that the inverse SEC results from eqn. 3 and from the Halàsz
method are reasonable, two principal effects can be regarded as responsible for the disagreement with the BET results: the limits of this last method when applied to small particles $(<20 \mu \mathrm{~m})$ and large pore diameters $(>400 \AA)^{2}$, and the possibility that, owing to the different kind of experimental determination, the pore population (i.e., the pore surface) explored by the chromatographic technique is not exactly the same as that "seen" by the nitrogen molecules of the BET method. If this is the case, the porosity data which are really of interest for liquid chromatographic applications should be those obtained from a suitable inverse SEC.

CONCLUSIONS

The determination of packing pore sizes by means of SEC in the inverse mode seems to give reliable results when the real pore geometry is adequately described by the model assumed in the theoretical relationships between the distribution coefficients and the dimensions of the eluted molecules. It seems possible to check the adequacy of the pore models adopted by comparison of the results with those obtained following the procedure of Halàsz. Notwithstanding the empirical character of the latter method, it has the advantage of avoiding any assumption on the pore structure, and furthermore gives the overall shape of the pore size distributions, which can be useful in comparing different packings or in controlling the reproducibility of the preparation of porous paterials.

ACKNOWLEDGEMENTS

We thank Drs. E. Giamello and A. Chiorino for the BET measurements.

REFERENCES

1 D. H. Freeman and I. C. Poinescu, Anal. Chem., 49 (1977) 1183.
2 I. Halàsz and K. Martin, Angew. Chem., Int. Ed. Eng., 17 (1978) 901.
3 W. Werner and I. Halàsz, J. Chromatogr. Sci., 18 (1980) 277.
4 S. B. Schram and D. H. Freeman, J. Liquid Chromatogr., 3 (1980) 403.
5 J. C. Giddings, E. Kucera, C. P. Russel and M. N. Myers, J. Phys. Chem., 72 (1977) 4397.
6 P. A. Bristow, P. N. Brittain, C. M. Riley and B. F. Williamson, J. Chromatogr., 131 (1977) 57.
7 S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academy Press, New York, 1967.

8 W. Mandema and H. Zaldenrust, Polymer, 18 (1977) 835.
9 H. Benoit, Z. Grubisic, P. Rempp, D. Decker and J. G. Zilliox, J. Chim. Phys. Phys.-Chim. Biol., 63 (1966) 1507.

10 O. Chiantore and M. Guaita, J. Liquid Chromatogr., 5 (1982) 643.
11 M. Doi, J. Chem. Soc., Farad. Trans. II, 71 (1975) 1720.
12 M. E. van Kreveld and N. van den Hoed, J. Chromatogr., 83 (1973) 111.

